Wearable Robots, Industrial Exoskeletons: Market Shares, Market Strategies, and Market Forecasts, 2016 to 2021
Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers.
Exoskeleton devices have the potential to be adapted further for expanded use in every aspect of industry. Workers benefit from powered human augmentation technology because they can offload some of the dangerous part of lifting and supporting heavy tools. Robots assist wearers with lifting activities, improving the way that a job is performed and decreasing the quantity of disability. For this reason it is anticipated that industrial exoskeleton robots will have very rapid adoption once they are fully tested and proven to work effectively for a particular task.
Get Report Sample : http://www.researchbeam.com/wearable-robots-industrial-exoskeletons-shares-strategies-and-forecasts-2016-to-2021-market/request-sample
Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.
Exoskeletons are capable of transferring the weight of heavy loads to the ground through powered legs without loss of human mobility. This can increase the distance that soldiers can cover in a day, or increase the load that they can carry though difficult terrain. Exoskeletons can significantly reduce operator fatigue and exposure to injury.
Industrial robots help with lifting, walking, and sitting Exoskeletons can be used to access efficiency of movement and improve efficiency.
Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers. Medical and military uses have driven initial exoskeleton development to date. New market opportunities of building and repair in the infrastructure, aerospace, and shipping industries offer large opportunity for growth of the exoskeleton markets.
Wearable robots, exoskeletons units are evolving additional functionality rapidly. Wearable robots functionality is used to assist to personal mobility via exoskeleton robots. They promote upright walking and relearning of lost functions. Exoskeletons are helping older people move after a stroke. Exoskeleton s deliver higher quality rehabilitation, provide the base for a growth strategy for clinical facilities.
Exoskeletons support occupational heavy lifting. Exoskeletons are poised to play a significant role in warehouse management, ship building, and manufacturing. Usefulness in occupational markets is being established. Emerging markets promise to have dramatic and rapid growth.
Enquire About Report : http://www.researchbeam.com/wearable-robots-industrial-exoskeletons-shares-strategies-and-forecasts-2016-to-2021-market/enquire-about-report
Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable paraplegics to walk again. Devices have the potential to be adapted further for expanded use in healthcare and industry. Elderly people benefit from powered human augmentation technology. Robots assist wearers with walking and lifting activities, improving the health and quality of life for aging populations.
Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are useful in medical markets. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.
In the able-bodied field, Ekso, Lockheed Martin, Sarcos / Raytheon, BAE Systems, Panasonic, Honda, Daewoo, Noonee, Revision Military, and Cyberdyne are each developing some form of exoskeleton for military and industrial applications. The field of robotic exoskeleton technology remains in its infancy.
Robotics has tremendous ability to support work tasks and reduce disability. Disability treatment with sophisticated exoskeletons is anticipated to providing better outcomes for patients with paralysis due to traumatic injury. With the use of exoskeletons, patient recovery of function is subtle or non existent, but getting patients able to walk and move around is of substantial benefit. People using exoskeleton robots are able to make continued progress in regaining functionality even years after an injury.
Wearable Robots, Exoskeletons at $36.5 million in 2015 are anticipated to reach $2.1 billion by 2021. All the measurable revenue in 2015 is from medical exoskeletons. New technology from a range of vendors provides multiple designs that actually work and will be on the market soon. This bodes well for market development.
WinterGreen Research is an independent research organization funded by the sale of market research studies all over the world and by the implementation of ROI models that are used to calculate the total cost of ownership of equipment, services, and software. The company has 35 distributors worldwide, including Global Information Info Shop, Market Research.com, Research and Markets, electronics.ca, and Thompson Financial. WinterGreen Research is positioned to help customers facing challenges that define the modern enterprises. The increasingly global nature of science, technology and engineering is a reflection of the implementation of the globally integrated enterprise. Customers trust wintergreen research to work alongside them to ensure the success of the participation in a particular market segment.
WinterGreen Research supports various market segment programs; provides trusted technical services to the marketing departments. It carries out accurate market share and forecast analysis services for a range of commercial and government customers globally. These are all vital market research support solutions requiring trust and integrity.
Also Request For Discount : http://www.researchbeam.com/wearable-robots-industrial-exoskeletons-shares-strategies-and-forecasts-2016-to-2021-market/purchase-enquiry
Companies Profiled
Market Leaders
• Ekso Bionics
• Sarcos / Raytheon
• Lockheed Martin
• Daewoo
• BAE Systems
• Panasonic
• Honda
• Daewoo
• Noonee
• Revision Military
• China North Industries Group Corporation (NORINCO)
• Rex Bionics
• Parker Hannifin
• Cyberdyne
• Sarcos
Market Participants
• AlterG
• Ekso Bionics
• Hocoma
• Parker Hannifin
• Revision Military
• ReWalk Robotics
• RexBionics
• Rostec
• Sarcos
• University of Twente
• Catholic University of America
• United Instrument Manufacturing Corporation
• Bionik Laboratories / Interactive Motion Technologies (IMT)
• Catholic University of America
• Fanuc
• Interaxon
• KDM
• Lopes Gait Rehabilitation Device
• MRISAR
• Myomo
• Orthocare Innovations
• Reha Technology
• Robotdalen
• Sarcos
• Shepherd Center
• Socom (U.S. Special Operations Command)
• Trek Aerospace
• United Instrument Manufacturing Corporation
Table of Contents
• WEARABLE ROBOT EXOSKELETON EXECUTIVE SUMMARY 28
• Wearable Robot Exoskeleton Market Driving Forces 28
• Exoskeleton Market Driving Forces 29
• Industrial Exoskeleton Devices Positioned to Serve Commercial Wearable
• Purposes 31
• Transition from Military Markets to Commercial Exoskeleton Markets 32
• Wearable Exoskeleton Market Shares 33
• Wearable Robot, Exoskeleton Market Forecasts 35
• WEARABLE ROBOT EXOSKELETON MARKET DESCRIPTION AND MARKET DYNAMICS 38
o Wearable Robot Exoskeleton Market Definition 38
o Market Growth Drivers For Exoskeletons 39
o Industrial Active And Passive Wearable Exoskeletons 40
o Human Augmentation 43
Exoskeleton Technology 44
o Safety Standards For Exoskeletons In Industry 45
Find More Reports : http://www.researchbeam.com/winter-green-research-publisher
About Us
We have a large database of quality and precise market research reports that will be very beneficial for your organization. Reports that we sell our authentic in nature and from reputed publishers, hence it can definitely help you with your growth opportunities. Research Beam will always make sure to bring most ethical and high quality reports. We value your relationship with us and look forward for a long term relation.
Contact Us
Global Head Quarters
5933 NE Win Sivers Drive,
#205, Portland, OR 97220
United States
+1 (800) 910-6452
help@researchbeam.com
Exoskeleton devices have the potential to be adapted further for expanded use in every aspect of industry. Workers benefit from powered human augmentation technology because they can offload some of the dangerous part of lifting and supporting heavy tools. Robots assist wearers with lifting activities, improving the way that a job is performed and decreasing the quantity of disability. For this reason it is anticipated that industrial exoskeleton robots will have very rapid adoption once they are fully tested and proven to work effectively for a particular task.
Get Report Sample : http://www.researchbeam.com/wearable-robots-industrial-exoskeletons-shares-strategies-and-forecasts-2016-to-2021-market/request-sample
Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.
Exoskeletons are capable of transferring the weight of heavy loads to the ground through powered legs without loss of human mobility. This can increase the distance that soldiers can cover in a day, or increase the load that they can carry though difficult terrain. Exoskeletons can significantly reduce operator fatigue and exposure to injury.
Industrial robots help with lifting, walking, and sitting Exoskeletons can be used to access efficiency of movement and improve efficiency.
Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers. Medical and military uses have driven initial exoskeleton development to date. New market opportunities of building and repair in the infrastructure, aerospace, and shipping industries offer large opportunity for growth of the exoskeleton markets.
Wearable robots, exoskeletons units are evolving additional functionality rapidly. Wearable robots functionality is used to assist to personal mobility via exoskeleton robots. They promote upright walking and relearning of lost functions. Exoskeletons are helping older people move after a stroke. Exoskeleton s deliver higher quality rehabilitation, provide the base for a growth strategy for clinical facilities.
Exoskeletons support occupational heavy lifting. Exoskeletons are poised to play a significant role in warehouse management, ship building, and manufacturing. Usefulness in occupational markets is being established. Emerging markets promise to have dramatic and rapid growth.
Enquire About Report : http://www.researchbeam.com/wearable-robots-industrial-exoskeletons-shares-strategies-and-forecasts-2016-to-2021-market/enquire-about-report
Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable paraplegics to walk again. Devices have the potential to be adapted further for expanded use in healthcare and industry. Elderly people benefit from powered human augmentation technology. Robots assist wearers with walking and lifting activities, improving the health and quality of life for aging populations.
Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are useful in medical markets. They are generally intended for logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.
In the able-bodied field, Ekso, Lockheed Martin, Sarcos / Raytheon, BAE Systems, Panasonic, Honda, Daewoo, Noonee, Revision Military, and Cyberdyne are each developing some form of exoskeleton for military and industrial applications. The field of robotic exoskeleton technology remains in its infancy.
Robotics has tremendous ability to support work tasks and reduce disability. Disability treatment with sophisticated exoskeletons is anticipated to providing better outcomes for patients with paralysis due to traumatic injury. With the use of exoskeletons, patient recovery of function is subtle or non existent, but getting patients able to walk and move around is of substantial benefit. People using exoskeleton robots are able to make continued progress in regaining functionality even years after an injury.
Wearable Robots, Exoskeletons at $36.5 million in 2015 are anticipated to reach $2.1 billion by 2021. All the measurable revenue in 2015 is from medical exoskeletons. New technology from a range of vendors provides multiple designs that actually work and will be on the market soon. This bodes well for market development.
WinterGreen Research is an independent research organization funded by the sale of market research studies all over the world and by the implementation of ROI models that are used to calculate the total cost of ownership of equipment, services, and software. The company has 35 distributors worldwide, including Global Information Info Shop, Market Research.com, Research and Markets, electronics.ca, and Thompson Financial. WinterGreen Research is positioned to help customers facing challenges that define the modern enterprises. The increasingly global nature of science, technology and engineering is a reflection of the implementation of the globally integrated enterprise. Customers trust wintergreen research to work alongside them to ensure the success of the participation in a particular market segment.
WinterGreen Research supports various market segment programs; provides trusted technical services to the marketing departments. It carries out accurate market share and forecast analysis services for a range of commercial and government customers globally. These are all vital market research support solutions requiring trust and integrity.
Also Request For Discount : http://www.researchbeam.com/wearable-robots-industrial-exoskeletons-shares-strategies-and-forecasts-2016-to-2021-market/purchase-enquiry
Companies Profiled
Market Leaders
• Ekso Bionics
• Sarcos / Raytheon
• Lockheed Martin
• Daewoo
• BAE Systems
• Panasonic
• Honda
• Daewoo
• Noonee
• Revision Military
• China North Industries Group Corporation (NORINCO)
• Rex Bionics
• Parker Hannifin
• Cyberdyne
• Sarcos
Market Participants
• AlterG
• Ekso Bionics
• Hocoma
• Parker Hannifin
• Revision Military
• ReWalk Robotics
• RexBionics
• Rostec
• Sarcos
• University of Twente
• Catholic University of America
• United Instrument Manufacturing Corporation
• Bionik Laboratories / Interactive Motion Technologies (IMT)
• Catholic University of America
• Fanuc
• Interaxon
• KDM
• Lopes Gait Rehabilitation Device
• MRISAR
• Myomo
• Orthocare Innovations
• Reha Technology
• Robotdalen
• Sarcos
• Shepherd Center
• Socom (U.S. Special Operations Command)
• Trek Aerospace
• United Instrument Manufacturing Corporation
Table of Contents
• WEARABLE ROBOT EXOSKELETON EXECUTIVE SUMMARY 28
• Wearable Robot Exoskeleton Market Driving Forces 28
• Exoskeleton Market Driving Forces 29
• Industrial Exoskeleton Devices Positioned to Serve Commercial Wearable
• Purposes 31
• Transition from Military Markets to Commercial Exoskeleton Markets 32
• Wearable Exoskeleton Market Shares 33
• Wearable Robot, Exoskeleton Market Forecasts 35
• WEARABLE ROBOT EXOSKELETON MARKET DESCRIPTION AND MARKET DYNAMICS 38
o Wearable Robot Exoskeleton Market Definition 38
o Market Growth Drivers For Exoskeletons 39
o Industrial Active And Passive Wearable Exoskeletons 40
o Human Augmentation 43
Exoskeleton Technology 44
o Safety Standards For Exoskeletons In Industry 45
Find More Reports : http://www.researchbeam.com/winter-green-research-publisher
About Us
We have a large database of quality and precise market research reports that will be very beneficial for your organization. Reports that we sell our authentic in nature and from reputed publishers, hence it can definitely help you with your growth opportunities. Research Beam will always make sure to bring most ethical and high quality reports. We value your relationship with us and look forward for a long term relation.
Contact Us
Global Head Quarters
5933 NE Win Sivers Drive,
#205, Portland, OR 97220
United States
+1 (800) 910-6452
help@researchbeam.com